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Linear Programming with Moore-Penrose Inverses
and the Gravitation Method

LI Bangxi, LU Rui, ZHAO Yihan and Yoriaki Fujimori

Abstract. This paper deals with an application of MP-inverse to linear programming
by introducing the gravitation method. The idea starts from obtaining the solution of
a usual system of equations with a rectangular coefficient matrix. The first solution
vector represented in terms of MP-inverses may contain non-positive components. In
the light of the gravitation method, we improve solution vectors step by step to the
direction with a better magnitude of the objective function. We apply MP-inverses in
our algorithm of finding the optimum solutions. The gravitational method displays a
concrete incremental way to optimize allocation rule.
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1. Introduction

In linear economics, linear programming plays an important role in describing the framewok
of analysis and proving theorems. The major theme of this article is to present an algorithm of
solving linear programming problems with the application of Moore-Penrose inverses.

In Section 2, fundamentals of MP-inverses are described. In Section 3, it will be shown
that solutions of the system of linear equations are represented precisely with MP-inverses of
the coefficient matrix.

In Section 4, the procedure of the algorithm will be explained in details, and we will prove
the completeness and the correctness for every step of the algorithm. In Section 5, we will
simulate step-by-step the algorithm with a concrete numerical example in Section 6. It will be
demonstrated that our algorithm converges to the optimal point. In Appendix, a python script
is presented to demonstrate the numerical example.

Refer to, e.g., Rao and Mitra(1971), Campbell and Meyer(1991) and Ben-Israel and Gre-
ville(2003), for the details of mathematical preliminaries. Also, refer to Pyle(1967,1972,1973),
from which an important inspiration was bestowed to the authors.

As for the mathematical notations, the following symbols are employed. 0 indicates the
column zero-vector of relevant dimensions. O denotes a zero-matrix of relevant dimensions.
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2. Moore-Penrose Inverses

Our discussion begins with the singular value decompositon, SVD, of matrices.
The singular value decomposition of matrix A is often represented by the form

(2.1) A D U˙V T ;

where U and V are unitary matrices of dimension m � m and n � n, respectively, ˙ is a
diagonal matrix with the same shape as A. It should be pointed out that if there are k non-zero
entries of matrix ˙ on diagonal, then the first k columns of U and V form the orthonormal
basis of the column space and the row space of A, respectively.

Corresponding to ˙ , we can define an n � m diagonal matrix, with diagonal elements

1

�i
. This matrix is represented by ˙C. namely, for ˙m�n D

0B@ �1

�2
: : :

1CA ; also define

˙Cn�m D

0B@
1
�1

1
�2

: : :

1CA : Further, the AC is derived from

(2.2) AC D V ˙CU T :

Mathematical manipulation shows that the following four equations are fulfilled forA andAC:

(2.3) AACA D A; ACAAC D AC; .AAC/� D AAC; .ACA/� D ACA:

AC as defined above is called the Moore-Penrose inverse, in short MP-inverse, of A.
Consider what matrix A does to a vector: first by taking product of x with the inverse

of matrix V , x will be decomposed into coordinates in Rn with respect to basis in columns
of V . Only those coordinates which correspond to the basis lying in the row space would
remain non-zero by multiplication of ˙ . Finally, this product is the coordinate in the column
space; multiply by U , and we get the final vector Ax D U˙V T x. Hence, we see that once
there exists an x such that Ax D b, which means b 2 R.A/, then ACb would definitely be
a satisfying vector, because A.ACb/ D .AAC/b D b. This can also be verified by AAC D
.U˙V T /.V ˙CU T / D UI .r/U T ; r D rank.A/. The deduction entails thatAAC (resp. ACA)
is the projection matrix onto the column (resp. the row) space of A.

3. Derive the Whole Solution Set of Ax D b

The solution to a system of linear equations can be written in the form of x D xp C xn, where
xp is called the particular solution and xn called the null solution. Let xp be a particular
solution to equations where Axp D b, and xn be all vectors in the null space which satisfies
Axn D 0. Normally finding either xp or xn is not easy, however, with MP-inverse, we can
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simplify both xp and xn as follows:

xp D ACb;(3.1)

xn D .I � ACA/y:(3.2)

Here, we let y run over all possible vectors among Rn. We need to verify two results:

Axp D AACb D b;(3.3)

A.I � ACA/y D 0; 8y 2 Rn:(3.4)

The first equation is obvious. As for the second, in view of AACA D A, we obtain

A.I � ACA/y D .A � AACA/y D Oy D 0:

What we need to emphasize is that, set fxW x D .I � ACA/y; y 2 Rng D fxWAx D 0g.
By deduction above, we demonstrated that fxW x D .I � ACA/y; y 2 Rng � fxWAx D 0g,
but actually there is no xn left. This is because, simply let y D xn, and we have x D .I �

ACA/xn D xn�A
C.Axn/ D xn. Hence, fxWAx D 0g � fxW x D .I �ACA/y; y 2 Rng, and

two sets are equal. This originates from matrix I �ACA is the projection to the nullspace, the
complement of the row space.

4. LP and Moore-Penrose-Inverse

Consider a canonical form of maximising linear programming:
By adding slack variables, one obtains the equality form of linear programming as:

(4.1) Maximize .x; c/ s.t. Ax D b; x � 0;

where A 2 Rm�n and x 2 Rn.
All the solutions (not necessarily unique) to equation Ax D b;A 2 Rm�n; x 2 Rn can be

represented as

(4.2) x D ACb C .I � ACA/y; y 2 Rn:

Next, we will show how this form could help to get the insight of linear programming.
Since all the solutions to equations Ax D b are in the form (4.2), by adding another

constraint that x � 0, we obtain the whole solution set.
We can further expand the second term .I �ACA/y. Essentially it express all the vectors

in the column space of I � ACA. Notice that dim.R.I � ACA// D n � r; r D rank.A/.
Hence, we can rewrite .I � ACA/y; y 2 Rn as

xn D

n�rX
iD1

�iei :

Here, ei ; i D 1; 2; :::; n � r are basis of R.I � ACA/.
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Now, consider our maximizing goal, and apply the transformation as below:

.x; c/ D .x; .I � ACA/c C ACAc/

D .x; .I � ACA/c/C .x; ACAc/

D .x; .I � ACA/c/C .ACAx; c/

D .x; .I � ACA/c/C .ACb; c/:(4.3)

Since .ACb; c/ in (4.3) is a constant, we have only to maximize the first term:

.x; .I � ACA/c/ D .xn; .I � A
CA/c/

D

n�rX
iD1

�i.ei ; .I � A
CA/c/:(4.4)

Denote � D .I � ACA/c, and it is clear that � 2 R.I � ACA/. Hence, we can choose
e1 D

�

j�j
, and set ei to be the orthonormal basis for the complement space. Then, we have

.e1; .I � A
CA/c/ D j.I � ACA/cj;(4.5)

.ei ; .I � A
CA/c/ D 0; i D 2; 3; :::; n � r:(4.6)

Hence, we simplify the maximizing goal function into maximizing

(4.7) max
�i

.x; c/ D �1j.I � A
CA/cj C .ACb; c/ s.t. x D ACb C

n�rX
iD1

�iei � 0:

We can find the optimal point by achieving the maximum �1.

5. Iterated Method of Optimization

5.1. Iteration steps for optimization. Here we introduce an iterated method of solving linear
programming utilizing MP-inverse. Given the instance A 2 Rm�n; b; c 2 Rn for LP

max
x
.x; c/ D cT x;(5.1)

s:t: Ax D b; x � 0:(5.2)

The method will be explained stepwise and we will prove the correctness of this method.
The iterated method follows five steps as below:

1. Start from an initial feasible point x D x0.
2. Find all the zero entries for x. Each entry means touching the constraint with
corresponding hyperplane normal vector ni ; i D 1; 2; :::; k.
3. Do the projection from maximum direction � to the intersection of spaces Si D
fxW xTni � 0; Ax D 0g; i D 1; 2; :::; k.
4. Denote the projection of � as ��, find the largest � � 0 s.t. xtC1 D xt C ��� � 0.
5. If the last step stucks, which means xtC1 D xt , then stop. Otherwise, go back to
step 2 and repeat.
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First, we prove that such a method optimizes the position vector xt step by step. According
to our goal function, we have

.xtC1; �/ D .xt C ��
�; �/ D .xt ; �/C �.�

�; �/ � .xt ; �/:

From the last section we know that optimizing the original LP is equivalent to maximizing
the coordinate along the direction e1, or �. The last inequality is derived from that �� is a
projection of �, which means �� ? .� � ��/. Hence, .��; �/ D .��; ��/ C .��; � � ��/ D

k��k2C0 � 0. During the procedure of this method, the goal function value will not decrease.
The equality holds if and only if �� D 0, which means that the point is optimal.

It remains to demonstrate that the method would optimize the solution point if there exists
any possible direction ��. Moreover, if such property holds, we have to prove that the method
would terminate in finite steps until it reaches the optimal solution position.

5.2. Existence of optimization direction. Denote all the feasible point set as� D fxWAx D
bg. Suppose that current position is given by xc . A necessary and sufficient condition for xc
being the optimal solution for LP is that

� \ fxW .x; �/ > .xc; �/g D ¿:

By the property that� is a compact and convex set, it follows that function .x; c/ is continuous.
If denoting the neighbourhood as U.x0; "/ D fxW kx�x0k < "g; " > 0, this condition can also
be stated equally as

8" > 0; U.xc; "/ \� \ fxW .x; �/ > .xc; �/g D ¿:

The point illustrated here is that if xc is not optimal, then just in the neighbourhood U.xc; "/
we can find a better solution. Denote that point as xd 2 U.xc; "/, and we find at least one
direction O� D xd � xc , s.t. 9� > 0; .xc C � O�; �/ D .xc; �/C �. O�; �/ > .xc; �/, just within the
range of �k O�k � ".

5.3. Finding optimizing direction. The main task is to find a concrete O�. Rather than search-
ing it in whole continuous space �, we propose a novel and much efficient way to search O�.
We focus on its relation with constraint hyperplane’s normal vectors. Denote the index for
zero entries of xc as fi W xcŒi � D 0g D fi1; i2; : : : ; isg. The boundary of feasible sets for
Ax D b is now simply hyperplanes fxŒi � D 0 W i D 1; 2; : : : ; ng. Hence, the normal vectors
for boundaries are simply natural coordinate basis ni D Œ0; : : : ; 1; : : : ; 0�T ; i D 1; 2; : : : ; n of
which the only non-zero entry for ni is ni Œi � D 1.

According to xc C O� 2 �, we know O� must satisfy O�Tnik � 0 for all normal vectors
nik ; k D 1; 2; : : : ; s. Moreover, this O� should naturally satisfies A O� D 0, since A.x C O�/ D
Ax C A O� D A O� D 0 is the condition that the new iteration point should still be in the feasible
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set. Thus, we formulate finding O� into an optimization problem

max
x

xT �

kxk
; s:t: Ax D 0;(5.3)

xTnik � 0; k D 1; 2; : : : ; s:(5.4)

It should be pointed out that this search mimic what gravitation does for a certain object.
Like a ball positioned at the intersection of some hard surfaces. Once there is a way for the
ball to roll down, gravitation could always manage to find a steepest direction which ball could
decline. That is also the intuition for our method here. Since the ball would always finally go
at the direction parallel to some neighbourhood’s surface, the real search space is actually
discretized rather than continuous, and this makes efficient searching possible.

Rigorously speaking, it suffices to just compute some finite number of discrete candidates
and pick the best. The reason in mathematics is by the fact that apart from the trivial case where
solution is x D �, we have d.x; �/ D kx��k2 D �T �CxT x�2xT � > 0. Hence, maximizing
the projection is equal to minimizing the distance between � and x since the norm of x does
not matter and �2 is constant. The point for transforming the problem into minimizing distance
is to show that the optimal point must lie at the border of the feasible space. Suppose that the
optimal x� lies on the boarder of a subset of halfspace fxTnik0 � 0; k

0 D 1; 2; : : : ; dg, namely
nTik0x

� D 0; k0 D 1; 2; : : : ; d . By Lagrangian multipliers we have

F.x; �k0/ D d.x; �/C

dX
k0D1

�k0n
T
ik0
x;(5.5)

@F

@x
D 2.x � �/C

dX
k0D1

�k0nik0 D O;(5.6)

@F

@�k0
D nTik0x D 0:(5.7)

Hence, we have x�T .x���/ D �1
2

Pd
k0D1 �k0n

T
ik0
x� D 0. Equally saying, x� is the projection

onto the intersection of the space Ax D 0 and nTik0x D 0. The projection property makes
it possible to use MP-inverse to find it quickly once given the candidate set of nik0 ; k

0 D

1; 2; : : : ; d .
Thus, a practical way is to enumerate simply all the subsets N 0 � N D fnikg. Denote

N 0 D fv1; v2; :::; vd g as the selected normal vectors. These are the constraint surface that the
vector is try to keep on; to compute the projection we construct the matrices:

(5.8) U D
�
ni1; ni2; :::; nik

�T
;
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(5.9) T D

0BBBBBB@
A

vT1
vT2
:::

vT
d

1CCCCCCA :
Given that I �T CT is a projection matrix which projects a vector onto the nullspace of matrix
T . It is ensured that Q� D .I � T CT /� will be perpendicular to all the normal vectors in N 0,
because T Q� D .T � T T CT /� D O� D 0. Next issue is to check whether it has non-negative
inner product with all the normal vectors in N , namely, check whether

(5.10) U Q� � 0:

If such a condition is satisfied, we successfully find a vector �� D Q� which optimize the goal
function along its direction. By enumerating all the possible subsets of normal vectors in N ,
�� with the largest norm is the optimal direction for xc .

From the discussion above, we know that this method must find such an �� if ever it exists.
Specially, we know that we achieve an optimal extreme point, if and only if I � T CT D O
for every feasible T , hence there is no way to optimize it by finding a T such that U�� D
.U � UT CT /� > 0.

For large scale problems, find the “steepest direction” can be formalized into a nearest
point problem as below:

(5.11) min
y
.cT � yT /.c � y/ s.t. Uy � 0; kyk2 D 1:

The intuition is that to find the optimal direction is equal to find the closest point to c on
unit sphere kyk D 1 under the constraint of Uy � 0. Actually, Uy � 0 defines a relatively
much simple sphere polyhedron compared with original LP. Such a problem can be solved by
any classical nearest neighbour algorithm like "-approximate nearest neighbour search etc. It
should be emphasized that in economics practice this problem is relatively simple, because
the angle between hyperplanes are obtuse, which means the normal vectors are concentrated
comparatively.

5.4. Starting point and termination. In most practical situations, especially economic set-
tings, b means resources or limitations. Hence, usually b � 0. What is more, during the
transformation from inequality to equality. The right part of matrix A is an identity matrix,
since there are m slack variables. Hence we can always partition A into

A D .M; Im/ ;

where M is an m � .n �m/ matrix. Hence, a simplest initial point would be

x0 D

 
0
b

!
:
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To start up the process, we can even increase x0 C ��; � > 0 to the utmost until it reaches the
boundaries of polytope. Sometimes the initial state may be given ex ante, for instance current
situation or investment strategy. We try to find the possibility for a better result.

Next, we will prove that this method will terminate for sure. For the sake of simplicity,
denote V .J / � �; J D fj1; j2; :::; jd g � f1; 2; ::; ng as the set contains all the points x whose
entries xŒjk� D 0; k D 1; 2; :::; d . Also, define a potential function P.x/ D �cT x for all
the points x 2 �, where � is the feasible point set. Term potential is an analogy to physics
concept, indicates that there will be a potential field following the gradient of �rP.x/ D c.
This terminology also shows the intimate connection between our method and real physical
process.

A point x is called extreme point in non-degenerate case if there exists a set J such that
fxg D V .J /. This means these constraints has narrowed the feasible set down to a single point.

The LP problem is non-degenerate if any corresponding set J always has cardinality jJ j D
rank.A/.

Two extreme points V .J / and V .K/ are called adjacent extreme points, if jJ n Kj D
1; jK n J j D 1. If two points V .J / and V .K/ are adjacent extreme points, then fyWy D
tV .J / C .1 � t /V .K/; 0 < t < 1g D V .J\K/ is called an edge.

One important lemma is that, during the iteration, there is a unique direction ��.x/ corre-
sponding to the current position x which records the gravitational force on that point. What
our algorithm in step 3 does is exactly to find this �� D ��.x/. The maximum ratio will be

(5.12) �.x/ D max
���.x/Cx�0

�:

Hence, there is a function � W�! � such that

(5.13) �.x/ D x C �.x/��.x/:

Function � characterizes the next destination of the current position. Apart from optimal point
x0, all x satisfy �.x/ 6D x and P.�.x// < P.x/.

Furthermore, there must be a switch between zero entries and non-zero entries, which
corresponds to transmission between extreme points and edges. Since edges and extreme
points are finite and point P.xk/ decrease monotonically, this iterated algorithm will not be
able to repeat infinitely. Once leaving one edge or extreme point, the procedure would leave it
ever since and never back. Hence, the iteration must terminate after finite steps.

6. Numerical Example

In order to show the basic procedure of solving LP, consider an empirical example below:

Maximize .cT x/ s.t. Ax D b:x � 0

The Japanese Society for Post Keynesian Economics
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Here, we assume

A D

0B@ 2; 1; 1; 0; 0

1; 2; 0; 1; 0

�1; 1; 0; 0; 1

1CA ; b D
0B@64
1

1CA ; c D
0BBBBB@
1

1

0

0

0

1CCCCCA :
Some simple calculations show that

AC D
1

40

0BBBBB@
11; 1; �10

1; 11; 10

17; �13; 10

�13; 17; �10

10; �10; 20

1CCCCCA ;

I � ACA D
1

40

0BBBBB@
7; �3; �11; �1; 10

�3; 7; �1; �11; �10

�11; �1; 23; 13; �10

�1; �11; 13; 23; 10

10; �10; �10; 10; 20

1CCCCCA ; � D .I � ACA/c D
0BBBBB@
0:1

0:1

�0:3

�0:3

0

1CCCCCA :
The goal is to increase � as much as possible, since its direction correspond to the maxi-
mum optimal extreme point. Here we use active constraints to refer to the entries that the
requirements of non-negative for whom would be violated if naively let the point go along the
optimized direction. This is to distinguish between fake constraints, where the point touches
the plane (as that entry is 0), but not actually hindering it from optimizing. Just like a ceiling
floor does not feel the force by the ball even if it is touched. We are just like computing the
joint force by surfaces and gravity now.

Our iteration proceeds as follows:

� stage 1
x0 D .0; 0; 6; 4; 1/

T , as the starting point
active constraints: None.
� stage 2

At this stage, since there is no active constraints, the optimal direction is just falling
directly as � does.

�� D �:

We then update our position by going as far as we can until we touch some new con-
straint such that a new update is needed.

x1 D x0 C
40

3
�� D

�
4

3
;
4

3
; 2; 0; 1

�T
:
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Now, we see if we add any positive scale of � to x1, the fourth entry x1Œ4� would
become negative, so that we have new active constraint as:
active constraint: n1 D .0; 0; 0; 1; 0/

T .

� stage 3
Now, we are hoping to find a direction which can optimize the current position with
respect to the constraint requirement. Since there is only one constraint, the subset
N 0 D fni1g, we can construct

T1 D

 
A

nTi1

!
D

0BBB@
2; 1; 1; 0; 0

1; 2; 0; 1; 0

�1; 1; 0; 0; 1

0; 0; 0 1; 0

1CCCA :
The reason that we put the active normal vectors to the bottom of the matrix is that, by
getting projection matrix,

I � T C1 T1 D
1

23

0BBBBB@
4; �2; �6; 0; 6

�2; 1; 3; 0; �3

�6; 3; 9; 0; �9

0; 0; 0; 0; 0

6; �3; �9; 0; 9

1CCCCCA ;

we actually get a projector that, by multiplying any x as .I � T C1 T1/x, we could
eliminate all the component of x which belongs to T1 row space. Namely the output
.I � T C1 T1/x would automatically be orthogonal to all the row vectors in original T1,
including all the normal vector constraints which we want our optimizing direction to
be perpendicular to. Hence, we are sure to expect that the new �� has the zero entry at
the fourth place.

�� D .I � T C1 T1/� D
1

23
.2;�1;�3; 0; 3/T :

After update,

x2 D x1 C
46

3
�� D

�
8

3
;
2

3
; 0; 0; 3

�T
:

Because � has negative components for both zero entries of x2, we have active con-
straints:

n1 D .0; 0; 1; 0; 0/
T ; n2 D .0; 0; 0; 1; 0/

T :

The Japanese Society for Post Keynesian Economics
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� stage 4
By enumerating we know that both n1 and n2 have to be considered, hence

T2 D

0B@ AnT1
nT2

1CA D
0BBBBB@
2; 1; 1; 0; 0

1; 2; 0; 1; 0

�1; 1; 0; 0; 1

0; 0; 1; 0; 0

0; 0; 0; 1; 0

1CCCCCA :
Thus, we can repeat the operation as the last stage in the same manner

I � T C2 T2 D O;

�� D .I � T C2 T2/� D O� D 0:

Algorithm stucks at same point and terminates.

Hence, we know
�
8

3
;
2

3
; 0; 0; 3

�T
is the optimal solution, with the optimal value 8

3
C
2

3
D

10

3
.

This proves to be the correct answer as expected.

7. Concluding Remarks

Although solving LP is a quite classical problem, such method still possesses significance of
the two folds.

First is the coincidence of economic optimization with gravitational descent process, also
the relationship between optimality of LP and economic equilibrium. Unlike other methods,
the gravitational method displays a concrete incremental way to optimize investment strategy
or the allocation rule. Faced with some limitations, one would seek for better possibilities to
optimize its utility just regarding its local property, which is current “tight” constraints. Such
greedy and short-sighted strategy for optimization, actually, leads to the optimal solution. Such
a process appears an interesting resemblance from physical gravitational descent process, in
which gravity is decomposed and its component along tight constraints are cancelled. We
prove that this method converges to global optimal in finite steps. Moreover, the equilibrium
of demand and supply, or the equilibrium of labour and capital, is exactly identical to the
balance of support forces from different constraints and the gravity force from optimization
direction. When such an equilibrium is reached, the pseudo inverse become real inverse and
all the constraint hyperplanes are active, hence causes I � T CT D O, which is equivalent to
saying that the current position is the optimal solution.

Second importance is that, unlike general mathematical LP problems, there are several
special conditions for LP in economics. The counterexample by Morin(2001) that the gravita-
tional method degenerates to exponential times of iteration seems to be unrealistic in econom-
ics, since all the variables involved are very unlikely to be of geometry distribution but rather
on the similar magnitude. Also, the core difficulty of finding next descend direction on each
iteration is easy in economic scenario, because there is few “sharp angles” in polytope. Hence,

Post Keynesian Review Vol. 7 No. 1
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the normal vectors of a corner is confined into a small conical area, making finding �� much
easier than general cases. Sometimes we may already be at a reasonable point, so that we need
not consider all the constraints and start from none to optimize the solution vector. That is also
the reason why the gravitational method matters here.

In economic theory, Fujimori(1982) showed interests in applying generalised inverses to
multi-sector economic models. Li-Fujimori(2013) and Li(2017), however, developed the spec-
tral analysis to investigate equilibria of joint-production systems. Their contributions will be
combined with the theory of this article elsewhere in near future.

Appendix A. Python Script for Numerical Example

The script used in this paper by Python 3.7 on Windows10 and/or OS X10.13 is as follows:

# PM-LP.py ver. 1.0

# Copywrite Lu Rui, 2019.10.02

# Run this on your shell prompt: python PM-LP.py

from numpy import *

def incre(v, delta):

bottle = 1e4

for i in range(len(v)):

if delta[i]< -1e-6 and -v[i]/delta[i]<bottle:

bottle = -v[i] / delta[i]

return v + bottle * delta

def getp(K, x):

global A

d = len(x); m = len(K)

maxim = -1e-6

ans = zeros(d)

for cnt in range(1, 2**m):

tmp = cnt; M = []

for i in range(m):

if tmp % 2:

M.append(K[i])

tmp = tmp // 2

M = concatenate((M,A), axis=0)

tri = dot(eye(d)-dot(linalg.pinv(M), M), x)

if min(dot(K,tri)) > -1e-6 and dot(tri,x)>maxim:

maxim = dot(tri, x)

ans = tri

return ans

set_printoptions(precision = 4, suppress = True)

m = 3; n = 5

A = [[2, 1, 1, 0, 0], [1, 2, 0, 1, 0],

[-1, 1, 0, 0, 1] ]

b = [6, 4, 1]

c = [1, 1, 0, 0, 0]

#Computation section:

A_ = linalg.pinv(A)

E = eye(n) - dot(A_, A)

x_p = zeros(n); x_p[n-m:] = b

maxdir = dot(E,c)

print(’maximum direction:’,maxdir)

x_p = incre(x_p, maxdir)

print(’starting point:’,x_p)

cnt = 0; bnd = ones(n)

while max(fabs(bnd)) > 1e-6:

cnt += 1

print(str(cnt)+’ iteration’)

K = []

for i in range(n):

if fabs(x_p[i]) < 1e-6:

tmp = zeros(n); tmp[i] = 1

K.append(tmp)

print(’constraint matrix:’)

print(K)

bnd = getp(K, maxdir)

print(’direction:’)

print(bnd)

x_p = incre(x_p, bnd)

print("new point:",x_p)

print()

print(’optimal point:’,x_p)

print(’optimal value’,dot(c,x_p))

# End of the script.

Bibliography

[1] Ben-Israel, and Greville, T. (2003), Generalized Inverse: Theory and Applications 2nd ed., Springer.

The Japanese Society for Post Keynesian Economics



LP WITH MP-INVERSES AND THE GRAVITATION METHOD 13

[2] Campbell, and Meyer, C.D. (2009), Generalized Inverse of Linear Transformations, SIAM.
[3] Chang, S. Y. and Murty, K. G. (1988), “The steepest descent gravitational method for linear programming”,

Discrete Applied Mathematics 25(3), pp.211-39.
[4] Fujimori, Y. (1982), Modern Analysis of Value Theory, Springer.
[5] Greenberg, H. J. (1997), “Klee-minty polytope shows exponential time complexity of simplex method”,

Mimeo.
[6] LI, Bangxi(2017), Linear Theory of Fixed Capital and China’s Economy: Marx, Sraffa and Okishio,

Springer-Nature.
[7] LI, Bangxi and Yoriaki Fujimori(2013), “Fixed Capital, Renewal Dynamics and Marx-Sraffa Equilibrium”,

in Kasamatsu, M. (ed), Macro- and Microfoundations of Economics, pp. 51-72, Waseda University Press.
[8] Meyer, C. D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM.
[9] Morin, T. L., Prabhu, N., and Zhang, Z. (2001), “Complexity of the gravitational method for linear pro-

gramming”, Journal of Optimization Theory and Applications 108(3), pp.633-58.
[10] Pyle, L. D. (1967), “A generalized inverse "-algorithm for constructing intersection projection matrices with

applications”, Numerische Mathematik 10(4), ss. 86-102.
[11] Pyle, L. D. (1972), “The generalized inverse in linear programming basic structure”, SIAM Journal on

Applied Mathematics 22(3), pp.335-55.
[12] Pyle, L. D. and Cline, R. E. (1973), “The generalized inverse in linear programming–interior gradient

projection methods”, SIAM Journal on Applied Mathematics 24(4), pp. 511-34.
[13] Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrics and Its Applications, John Wiley &

Sons.
[14] van Rossum, Guido (2016), Python Tutorial 3rd ed., Python Software Foundation.

Author(s)
LI Bangxi, Associate Professor Dr. of Economic Theory, Institute of Economics, School of Social
Sciences, Tsinghua University, Beijing, China,
LU Rui, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China (Cor-
responding author), Email: lu233rui@gmail.com
ZHAO Yihan, Graduate School, Institute of Economics, School of Social Sciences, Tsinghua Univer-
sity, Beijing, China (co-corresponding author). Email: zyh18@mails.tsinghua.edu.cn
Yoriaki Fujimori, Professor Emeritus, Waseda University, Tokyo, Japan.

Acknowledgements: This paper is supported by The National Social Science Foundation of China
(No.17BJL020). The authors should express their thanks to helpful comments and suggestions to the
editors of the journal. Usual caveats apply.

Post Keynesian Review Vol. 7 No. 1


