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Marx-Okishio System and Perron-Frobenius Theorem
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Abstract. This paper presents two notes on Marx’s political economy. First, in the case
of the so-called Leontief framework, one sees that major propositions of Marx’s politi-
cal economy are all derived from the Perron and Perron-Frobenius theorems. Since the
results owe much to Okishio(1963, 1993), the system will be named the Marx-Okishio
system. Second, one will see that thePerron theorem is derived from the convergence
of the transformation procedure. The main point of this paper is that Marx-Okishio’s
system is fundamentally equivalent to the Perron theorem. Remark that, by applying
Morishima’s dual-dualities, proofs will be made simpler.

Keywords: Marx-Okishio, Perron theorem, Perron-Frobenius theorem,
Morishima, dual dualities, matrix power, convergence.

1. Introduction

Marx’s main literature, Das Kapital, contains many important quantitative problems, such as
the determination of values of commodities, the analysis of surplus values and exploitation, the
transformation problem, and problems related to the profit rate etc. Many a scholar challenged
those problems, and it is not too much to say that Okishio(1963) was the first in presenting the
systematic analysis and mathematical description of Marx’s political economy. This develop-
ment is called Marx-Okishio’s system hereafter.

Okishio’s formulation is based on the system without fixed capital, joint production and
skilled labour. He started his mathematical discussion from the Perron theorem(1907) and the
Perron-Frobenius theorem(1912), hereafter P-theorem and PF-theorem respectively, concern-
ing the existence of the positive eigenvalue accompanied by positive eigenvectors of positive
or non-negative irreducible matrices. Basic propositions of Marx, however, were almost all
supported by Okishio. In this sense, Okishio established the Marx-Okishio system.

Marx-Okishio’s theory was later supplemented by Morishima (1973) and properly char-
acterised as a system of dual dualities. In what follows the idea of dual dualities is explicitly
employed in proving propositions.

Section 3 is dedicated to demonstrating that the convergence of Marx-Okishio’s transfor-
mation implies the PF-theorem, with an elementary approach.

In Section 4, the summary of this paper will be stated.
Appendix A gives some preliminaries on non-negative matrices.
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2. Marx-Okishio’s System from the Angle of Dual Dualities

2.1. Mathematical preliminaries. Assume the Leontief input-output framework of produc-
tion with n types of commodities. Let A � O and ` > 0n denote an irreducible input matrix
and a labour vector, respectively. The most fundamental assumption with respect to the system
is the productiveness of the system matrix A, that is,

A.1. There exists an x > 0n such that x > Ax.

This is equivalent to �A < 1 with respect to a non-negative and irreducible A.

2.2. Dual Dualities. The term dual dualities was first employed by Morishima (1973, p.106),
and it elegantly represents the system that covers Marx-Okishio’s. Three systems, that is, the
value system, the production price system, and the capacity growth system will be summarised
here.

The value system. The system of values, w, of commodities is described by

(2.1) w D wAC `:

PROPOSITION 2.1. (1) A.1. implies that w satisfying (2.1) is positive.
(2) For x such that x D Ax C y with y > 0, wy D `x.

Surplus value and surplus labour. Let f � 0n stand for a wage-goods bundle for a unit
expenditure of labour. The value of labour-power is then determined by wf . 1�wf gives the
magnitude of surplus value per unit of labour. The rate of surplus value is then defined by the
following:

(2.2) � D
1

wf
� 1:

Let z denote the vector of necessary products that is necessary for reproducing labour
power expended for the production of current products x > 0n, and

(2.3) z D Az C f `x:

The amount of necessary labour is now defined by `z, and the rate of surplus labour is defined
by � D`x

`z
� 1. From a simple manipulation, one has:

PROPOSITION 2.2. � D �.

Profitability. Since the value of labour power enters into capital cost, the magnitude of sur-
plus value appears as profit, and values of commodities emerge as prices of commodities to the
eyes of capitalists. What matters to capitalists is whether the system of commodity production
is profitable: if there exists a p > 0n such that

(2.4) p > pAC pf ` D p.AC f `/;

the system .A; `; f / is called profitable. Write the extended input matrix M D AC f `, and
the system of commodity production is profitable iff �M < 1.

Remark that from (2.1) and (2.2) one has here:
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PROPOSITION 2.3. � > 0 implies that M is profitable.

The transformation of values into production prices. In Marx’s political economy, the
value system is transformed to the production price system that represents the formation of
the average, or the equilibrium rate of profit on advanced capital.

In what follows, the next one is assumed:

A.2. There exists an x > 0n such that x > Mx.

Marx-Okishio’s iteration procedure is described as follows.
For an arbitrarily given x > 0n, one can generate sequences, f�kg and fwkg, such that,

with the initial value wo D w,

1C �k D
wkx

wkMx
;(2.5)

wkC1 D .1C �k/w
kM:(2.6)

THEOREM 2.4. The sequences generated by (2.5) and (2.6) converge, if M is primitive with
A.2.

In fact, one may take a right-side PF-vector x such that Mx D �Mx in view of Theorem
A.1. Then, .1C �k/�M D 1, namely, f�kg is convergent: lim

k!1
�k D � . Now, one has only

to look at

(2.7) wkC1 D .1C �/wkM D wo QM k;

where QM D .1C �/M with � D 1
�M
� 1 and an initial value wo D w.

As explained in Appendix A, the matrix power QM k , and hence fwkg converges.
The limits of the sequence f�kg and that of fwkg define the system of production prices

of commodities.

The system of production prices. In summary, the system of production prices of commodi-
ties is represented statically by the following: a pair of .p; �/ such that

(2.8) p D .1C �/pM;

where � D 1

�M
� 1, and px D wx for an arbitrary chosen x > 0n.

Remark that p is normalised on the basis of the value system w.
The gist of Marx’s political economy is given by the following:

THEOREM 2.5 (Fundamental Marxian Theorem). � > 0 iff � > 0.

Similarly, one obtains from (2.3) and (2.8):

PROPOSITION 2.6. � > 0 iff � > 0.

The capacity growth path. The dual system of the production price system in the quantity
side is represented by the following:

(2.9) xc D .1C ıc/Mxc;
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where ıc and xc stand for, respectively, the capacity growth rate and the capacity growth path,
which appeared in the above paragraph substantively.

PROPOSITION 2.7. In (2.8) and (2.9), ıc D � .

2.3. The Okishio theorem. The Okishio theorem states that cost-reducing innovation will
bring about a higher profit rate when the innovation prevails in the economy. In what follows,
process innovation alone will be dealt with.1

Let M and NM stand for old and new systems of techniques, respectively. Let p denote a
production price vector corresponding to M . Suppose that NM is cost-reducing under p, and
one has

(2.10) pM � p NM:

PROPOSITION 2.8 (generalised Okishio’s theorem). LetM and NM be irreducible, non-negative
matrices. Suppose that, for p such that pM D �Mp, (2.10) holds true. Then, � NM < �M .

In fact, take u D xc
NM
> 0n, and one has

(2.11) pMu D �Mpu > p NMu D � NMpu:

Since pu > 0, it follows that � NM < �M .
The original Okishio theorem assumes that the real wage rate is kept constant throughout

the innovation process. Original Okishio theorem corresponds to one possible case in which
M D AC f ` and NM D NAC f Ǹ, where NX denotes an innovative technique matrix or vector.
Needless to say, f might be changed, say Nf , in so far as pf D p Nf . All possible cases are
included in Proposition 2.8.

The Okishio theorem says that the production prices function as an important capitalists’
tool for choosing techniques.

3. From Marx-Okishio to Perron-Frobenius

Take the sequences generated by (2.5) and (2.6), and suppose that they converge.

THEOREM 3.1. If the Marx-Okishio transformation procedure with an irreducible system ma-
trix converges, the system matrix is primitive, and the Perron theorem follows.

In fact, the sequence f�kg possesses its limit, say � , so that one has only to consider the
sequence fwkg. Since the property of M and its transpose is the same, one may consider an
iteration

(3.1) xt D QMxt�1;

where QM D .1C �/M with xo > 0n. Note that for given x > 0n, one has for any k > 0

(3.2) wkx D wkC1x:

1As for product-innovation, refer to, e.g., Fujimori(1998).
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Since it converges, it follows that M possesses the dominant eigenvalue and a positive
eigenvector associated with it, which conforms to the case of matrix-power convergence à la
Jordan’s cannonical form.

This means that non-negative irreducible matrices possess a positive eigenvalue accompa-
nied by a positive eigenvector. The core part of the PF-theorem is proved.

4. Concluding Remarks

So far, two major points are summarised and demonstrated. The first one is that most of propo-
sitions of Marx-Okishio’s system are derived from the PF-theorem. Primitivity of nonnegative
coefficient matrices should be assumed, however, for the convergence of the transformation
procedure. The second point is the other way round. If one starts from the convergence
of Marx-Okishio’s transformation of values into production prices, one can prove the PF-
theorem. That is to say, Marx-Okishio’s system is equivalent to the Perron theorem. One may
say that the transformation is the apex in Marx’s political economy.

One should remark that primitivity of matrices is not a strong condition in dealing with
linear models of closed economies. Such an economy includes the rice growing sector, for
instance, with recursive inputs of its own outputs.

The proof itself can be done without employing the capacity growth path, as was done
in original Okishio’s paper (Okishio, 1963, 1993), except Proposition 3.1. Some may say
that Morishima’s dual-dualities is redundant or not essential with respect to the framework of
theory itself. If one introduces Morishima’s idea of dual dualities, however, one can make
use of the quantity system, in particular the capacity growth path, as an aggregator, and the
proofs of propositions can be made simpler and straight. The recognition of dual dualities
is an important contribution made by Morishima(1973) in this sense. This is why this paper
explicitly applied Morishima’s dual-dualities.

One should recall that Uzawa (1962) proved the equivalence between Walras’ theorem
of existence of general equilibrium and Brouwer’s fixed point theorem. Uzawa’s equivalence
theorem shows that Walras’ theory is robust as a vehicle of rigorous and logical arguments.
Likewise, it is seen that Marx-Okishio’s system is logically robust.

Okishio’s propositions, in particular Okishio’s theorem, were challenged by many schol-
ars, but most of those critiques are misleading, because they do not understand well the math-
ematical background of Marx-Okishio’s theory.

Appendix A

A.1. Preliminaries. In most of the cases, square matrices are dealt with. As for vector- and
matrix-notations, 0n and 0n denote, respectively, the n-dim zero column- and row- vectors, and
O stands for the zero matrix of an appropriate dimension. In matrix- and vector-inequalities,
the three elementwise inequalities, > (strict inequality), � (semi-inequality, 6D) and = are
distinguished. The same applies to the opposite inequalities. As for terminology and details,
refer to Nikaido(1968), Seneta(1980), Strang(1988), Meyer (2004), Chatelin(2012) etc.
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A.2. Theorems on non-negative matrices. The major mathematical propositions that sup-
port the following discussion are two: one is P-theorem on positive matrices, and the other
PF-theorem on non-negative irreducible matrices. The core part of the theorems can be stated
as follows:

THEOREM A.1 (Perron-Frobenius). Let A � O be irreducible. (1) There exists a positive
eigenpair .�A; x/ > .0; 0n/, such that �Ax D Ax.
(2) �A is a simple root of the characteristic equation of A.
(3.a) For other eigenvalue �i 6D �A holds �A � j�i j.
(3.b) If A > O , then a strict inequality holds �A > j�i j.

The items (1), (2) and (3.a) (resp. (3.b)) constitute the core of F- (resp. P-)theorem.
P- theorem can be easily extended to A � O such that for some m > 0 , Am > O .
Remark the difference between the two, (3.a) and (3.b). F-theorem permits the existence

of eigenvalues on the same spectral radius. This is an important point.
In this paper, �A denotes the Perron-Frobenius root, in short, PF-root, of A.
One has to deal with the limit of matrix-power Ak.
Given a general m � n matrix sequence

˚
A.k/

	
; k D 1; 2; � � � , if for any i; j , sequencen

a
.k/
ij

o
is convergent, the matrix sequence

˚
A.k/

	
is said to be convergent.

For a special matrix sequence
˚
Akn�n

	
; k D 1; 2; � � � , however, there is another way to

judge its convergence: one needs to employ the Jordan canonical form.

A.3. Jordan’s canonical form.

PROPOSITION A.2 (Jordan’s canonical form). Let A denote an n � n matrix. There exists an
n � n non-singular matrix P , such that

P �1AP D

0B@J1 : : :

Jm

1CA ;

where Ji D

0BBBB@
�i 1

�i
: : :

: : : 1

�i

1CCCCA
di�di

is a Jordan block, �i is the eigenvalue of A, and di is

the multiplicity of �i for A.

Then, we have

Ak D P diag
�
J k1 ; � � � ; J

k
m

�
P �1:

PROPOSITION A.3. The matrix Ak is convergent, iff J k1 ; � � � ; J
k
m converge.
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We know by matrix multiplication that

J ki D

0BBBB@
�ki C 1

k
�k�1i � � � C

di�1

k
�
k�diC1
i

�ki
: : :

:::
: : : C 1

k
�k�1i

�ki

1CCCCA
di�di

;

where

C lk D

8<:
k .k � 1/ � � � .k � l C 1/

lŠ
; if l 6 k;

0; if l > k:

If j�i j < 1, then J ki will converge to the zero matrix.
If j�i j > 1, then J ki will diverge.
If j�i j D 1, we need further discussion. Since the elements of the upper triangle are diver-

gent, if J ki is convergent, the multiplicity of �i must be 1, that is, the matrix Ji degenerates into
the first-order matrix Œ�i �. In addition, �i must be 1, because negative numbers and imaginary
numbers cannot converge.

Now, we can summarize the convergence conditions for matrix sequence
˚
Akn�n

	
.

PROPOSITION A.4. A matrix sequence
˚
Akn�n

	
is convergent, if either of the following two

holds true:

(1) The spectral radius of A is less than 1.
(2) The unity, 1, is an eigenvalue of A,2 and the absolute value of other eigenvalues is strictly

less than 1.

A.4. Convergence of the power method. Based on the Jordan canonical form of matrices,
one can obtain the following:

PROPOSITION A.5. LetA stand for an n-dim square matrix, with eigenvalues �1; : : : ; �n such
that j�1j > j�2j � : : : � j�nj. A sequence fxtg, generated by

(A.1) xtC1 D Axt ; t D 0; 1; : : :

converges to c�t1�, where A� D �1� and c is an appropriately chosen scalar.

The power method fails, however, when the coefficient matrix is not primitive.

A.5. A tip for the imprimitive case. If an irreducible matrix A is imprimitive, then Ak does
not converge, so that some tricks should be introduced to prove F-theorem from P-theorem.

First, confirm that one has the following:

PROPOSITION A.6. Let A D
˚
aij
	
� O stand for an n-dim irreducible matrix. If, for some

i D 1; ::; n, ai i > 0, then A is primitive.

2 The algebraic multiplicity of 1 is equal to the geometric multiplicity.
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Now, take an irreducible but imprimitive A. Consider a sequence of fAkg, such that
Ak D

1

k
ICA. Ak is primitive. Take the sequence of eigenpairs f.�k; xk/g; k D 1; 2; : : :,

where xk > 0n is normalised as jjxkjj D 1. Since fAkg is decreasing, f�kg is decreasing and
bounded from below, �k � 0. As k ! 1, xk ! x > 0n, and hence �k ! �A > 0. Thus,
F-theorem can be derived from P-theorem.
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